46 research outputs found

    The functional properties of a truncated form of endothelial cell protein C receptor generated by alternative splicing

    Get PDF
    BACKGROUND: A soluble form of endothelial cell protein C receptor (sEPCR) is generated by shedding of the cellular form. sEPCR binds to protein C and factor VIIa and inhibits both the activation of protein C and the activity of activated protein C and factor VIIa. High sEPCR levels may increase the risk of thrombosis. We wanted to explore the possibility of detecting soluble endothelial cell protein C receptor forms generated by alternative splicing. DESIGN AND METHODS: Reverse transcriptase polymerase chain reaction was used to look for new forms of endothelial cell protein C receptor. A yeast expression system was used to generate sufficient amounts of the distinct sEPCR forms. Surface plasmon resonance experiments, chromogenic assays, clotting assays and immunoassays were subsequently performed to characterize a new form of sEPCR that was found. RESULTS: We demonstrated, by reverse transcriptase polymerase chain reaction and sequencing, the existence of a new, soluble form of endothelial cell protein C receptor generated by alternative splicing, in which the transmembrane region is replaced by a 56-residue tail (tEPCR). Its cDNA was present in human umbilical vein endothelial cells and in most tissues as well as in lung cancer cells. tEPCR was not located in the membrane of transfected cells. We demonstrated that tEPCR binds to protein C and factor VIIa. tEPCR blocked the generation of activated protein C and inhibited the activity of both activated protein C and factor VIIa. tEPCR was detected, by immunoassays, in the supernatant of lung cancer cells and human umbilical vein endothelial cells. CONCLUSIONS: A truncated form of alternatively spliced endothelial cell protein C receptor was detected in the endothelium and cancer cells. tEPCR behaves as sEPCR generated by shedding of the cellular endothelial cell protein C receptor

    Losartan metabolite EXP3179 blocks NADPH oxidase-mediated superoxide production by inhibiting protein kinase C: potential clinical implications in hypertension

    Get PDF
    Oxidative stress plays a critical role in the pathogenesis of hypertension. The NADPH oxidase constitutes a major source of superoxide anion in phagocytic cells, and its activation is associated with matrix metalloproteinase (MMP)-9 secretion by these cells. We investigated the effects of the angiotensin II type 1 receptor antagonist losartan and its metabolites (EXP3174 and EXP3179) on NADPH oxidase activity and MMP-9 secretion in human phagocytic cells. EXP3179, but not losartan and EXP3174, dose-dependently inhibited (P<0.05) phorbol myristate acetate and insulin-stimulated NADPH oxidase activity. EXP3179 also inhibited phorbol myristate acetate-induced NADPH oxidase in endothelial cells. In addition, EXP3179 inhibited (P<0.05) both phorbol myristate acetate-stimulated p47phox translocation from cytosol to membranes and protein kinase C activity. Affinity experiments and enzymatic assays confirmed that EXP3179 inhibited several protein kinase C isoforms. EXP3179 also inhibited (P<0.05) phorbol myristate acetate-stimulated MMP-9 secretion. In a study performed in 153 hypertensive patients, phagocytic NADPH oxidase activity was lower (P<0.05) in losartan-treated compared with untreated patients and in patients treated with other angiotensin II type 1 receptor antagonists or with angiotensin-converting enzyme inhibitors. Plasma levels of MMP-9 were lower (P<0.05) in losartan-treated hypertensives compared with the other group of patients. Thus, EXP3179 acts as a blocker of the NADPH oxidase in phagocytic cells by a potential mechanism that targets the protein kinase C signaling pathway. This effect can be involved in reduced MMP-9 secretion by these cells. It is proposed that the EXP3179 metabolite may confer to losartan the specific capacity to reduce oxidative stress mediated by phagocytic cells in hypertensive patients

    sPLA2-V inhibits EPCR anticoagulant and antiapoptotic properties by accommodating lysophosphatidylcholine or PAF in the hydrophobic groove

    Get PDF
    The endothelial protein C receptor (EPCR) plays an important role in cardiovascular disease by binding protein C/activated protein C (APC). EPCR structure contains a hydrophobic groove filled with an unknown phospholipid needed to perform its function. It has not been established whether lipid exchange takes place in EPCR as a regulatory mechanism of its activity. Our objective was to identify this phospholipid and to explore the possibility of lipid exchange as a regulatory mechanism of EPCR activity driven by the endothelially expressed secretory group V phospholipase A2 (sPLA2-V). We identified phosphatidylcholine (PCh) as the major phospholipid bound to human soluble EPCR (sEPCR). PCh in EPCR could be exchanged for lysophosphatidylcholine (lysoPCh) and platelet activating factor (PAF). Remarkably, lysoPCh and PAF impaired the protein C binding ability of sEPCR. Inhibition of sPLA2-V, responsible for lysoPCh and PAF generation, improved APC binding to endothelial cells. EPCR-dependent protein C activation and APC antiapoptotic effect were thus significantly enhanced. In contrast, endothelial cell supplementation with sPLA2-V inhibited both APC generation and its antiapoptotic effects. We conclude that APC generation and function can be modulated by changes in phospholipid occupancy of its endothelial cell receptor

    Genetic Associations for Activated Partial Thromboplastin Time and Prothrombin Time, their Gene Expression Profiles, and Risk of Coronary Artery Disease

    Get PDF
    Activatedpartialthromboplastintime (aPTT) and prothrombintime (PT) are clinical tests commonly used to screen for coagulation-factor deficiencies. One genome-wide association study (GWAS) has been reported previously for aPTT, but no GWAS has been reported for PT. We conducted a GWAS and meta-analysis to identify genetic loci for aPTT and PT. The GWAS for aPTT was conducted in 9,240 individuals of European ancestry from the Atherosclerosis Risk in Communities (ARIC) study, and the GWAS for PT was conducted in 2,583 participants from the Genetic Study of Three Population Microisolates in South Tyrol (MICROS) and the Lothian Birth Cohorts (LBC) of 1921 and 1936. Replication was assessed in 1,041 to 3,467 individuals. For aPTT, previously reported associations with KNG1, HRG, F11, F12, and ABO were confirmed. A second independent association in ABO was identified and replicated (rs8176704, p = 4.26 × 10−24). Pooling the ARIC and replication data yielded two additional loci in F5 (rs6028, p = 3.22 × 10−9) and AGBL1 (rs2469184, p = 3.61 × 10−8). For PT, significant associations were identified and confirmed in F7 (rs561241, p = 3.71 × 10−56) and PROCR/EDEM2 (rs2295888, p = 5.25 × 10−13). Assessment of existing geneexpression and coronaryarterydisease (CAD) databases identified associations of five of the GWAS loci with altered geneexpression and two with CAD. In summary, eight genetic loci that account for ∼29% of the variance in aPTT and two loci that account for ∼14% of the variance in PT were detected and supported by functional data

    MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression

    Get PDF
    Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses

    Recombinant expression of biologically active murine soluble EPCR

    No full text
    Endothelial cell protein C receptor (EPCR) downregulates the coagulation system and prevents thrombosis by binding to protein C/activated protein C (APC) and factor VII/activated factor VII (VIIa). Recombinant APC and factor VIIa have been shown to be useful in a variety of clinical conditions. Murine models could prove extremely helpful in order to study in vivo actions of these drugs. It is therefore crucial to demonstrate the interaction between these and murine EPCR. We expressed the extracellular region of the murine EPCR in a yeast expression system and obtained a colony of Pichia pastoris that produce high amounts of recombinant extracellular murine EPCR, which we purified by liquid chromatography to homogeneity. The analysis of the interaction of EPCR with APC and factor VIIa was carried out using surface plasmon resonance technology. Murine EPCR binds to APC and factor VIIa with similar affinity than human EPCR. As for human EPCR, the binding is Ca2+ dependent while Mg2+ ions optimize it. In conclusion, we succeeded in establishing a system to produce enough recombinant soluble murine EPCR to perform biochemical studies. Murine EPCR binds to human APC and factor VIIa, which opens up new possibilities for characterizing the in vivo effect of APC and factor VII by using murine models
    corecore